��
INTERNATIONAL TELECOMMUNICATION UNION�����TELECOMMUNICATION�STANDARDIZATION SECTOR
STUDY PERIOD 1997 -2000�
September 1998
Original: English��

STUDY GROUP 16 - CONTRIBUTION

SOURCE* :	RAPPORTEUR FOR Q.14/16 (Gary THOM)
TITLE:		ENHANCEMENTS TO H.245 VERSION 4 FOR DETERMINATION AS H.245 VERSION 5
This document provides enhancements to H.245 version 4 for determination as H.245 version 5. It contains a reference to T.140, additions for the support of H.223 Annex D, and the text of D.217 which describes an object oriented approach to H.245 extension. It also contains additions required to support ISO/IEC 14496-2 (MPEG-4 Visual Standard).

1. Addition of reference to T.140
Means to control a T.140 text conversation channel has been inserted in H.245, but a reference to T.140 has not been added to the list of references in H.245. The following should therefore be added to the list of H.245 references.
[] ITU-T Recommendation T.140 (1998) - Text conversation protocol for multimedia application
2. Additions for the support of H.223 Annex D
The following changes should be made to H.245 to provide support for H.223 Annex D.
1. CAPABILITY EXCHANGE DEFINITIONS

H223AnnexCCapability	::=SEQUENCE
{
	[Deleted syntax]

	muximumAL1MPDUSize	INTEGER(0..65535),	--units octets
	muximumAL2MSDUSize	INTEGER(0..65535),	--units octets
	muximumAL3MSDUSize	INTEGER(0..65535),	--units octets
	…,
	rsCodeCapability	BOOLEAN OPTIONAL
}

h223AnnexCCapability: indicates the capability to receive and process AL-PDUs as described in Annex C/H.223, with the following conditions.
[Deleted text.]
rsCodeCapability, if true, indicates the capability to receive the AL-PDU’s for which Reed-Solomon coding is indicated.

�2. LOGICAL CHANNEL SIGNALING DEFINITIONS

H223AL1MParameters	::=SEQUENCE
{
	[Deleted syntax]
	crcLength	CHOICE
	{
		crc4bit	NULL,
		crc12bit	NULL,
		crc20bit	NULL,
		crc28bit	NULL,
		...,
		crc8bit	NULL,
		crc16bit	NULL,
		crc32bit	NULL,
		crcNotUsed	NULL
	},

	rcpcCodeRate	INTEGER (8..32),

	arqType	CHOICE
	{
		noArq	NULL,
		typeIArq	H223AnnexCArqParameters,
		typeIIArq	H223AnnexCArqParameters,
		...
	},
	alpduInterleaving	BOOLEAN,
	alsduSplitting	BOOLEAN,
	...,
	rsCodeCorrection	INTEGER (0..127) OPTIONAL
}

H223AL3MParameters	::=SEQUENCE
{
	[Deleted syntax]
	crcLength	CHOICE
	{
		crc4bit	NULL,
		crc12bit	NULL,
		crc20bit	NULL,
		crc28bit	NULL,
		...,
		crc8bit	NULL,
		crc16bit	NULL,
		crc32bit	NULL,
		crcNotUsed	NULL
	},

	rcpcCodeRate	INTEGER (8..32),

	arqType	CHOICE
	{
		noArq	NULL,
		typeIArq	H223AnnexCArqParameters,
		typeIIArq	H223AnnexCArqParameters,
		...
	},
	alpduInterleaving	BOOLEAN,
	alsduSplitting	BOOLEAN,
	...,

	rsCodeCorrection	INTEGER (0..127) OPTIONAL
}

H.223AL1Mparameters: is used to indicate parameters specific to the use of adaptation layer AL1M.
transferMode indicates whether framed mode or unframed is used.
headerFEC indicates whether FEC is SEBCH(16,7) or Golay(24,12).
The length of CRC bits for the payload is indicated by crcLength as 4, 8, 12, 16, 20 or 28 or 32 bits or by crcNotUsed.
rcpcCodeRate indicates the RCPC code rate as 8/8, 8/9, … 8/32.
arqType indicates the ARQ mode of operation: no ARQ indicates no retransmission, typeIArq indicates ARQ type I, and typeIIArq indicates ARQ type II.
alpduInterleaving, if true, indicates the use of AL-PDU interleaving.
alsduSplitting, if true, indicates the use of AL-SDU splitting mode.
rsCodeCorrection indicates the RS code correction ability as 0, 1, …, 127 octets. A fixed number of the RS code parity symbols (octets) corresponding to rsCodeCorrection is added to each variable length AL-SDU* and CRC field. When the RS coding is used, typeIIArq and alpduInterleaving are not supported.

3. Object oriented approach to H.245 extension.
The following changes, which were proposed in D-217, should be made to H.245 to support an object oriented approach to H.245 extension..
Add to VideoCapability, AudioCapability, the application part of DataCapability, VideoMode, AudioMode, the application part of DataMode the following line:

	generic	GenericCapability,
Add the following to Capability:

	controlCapability	GenericCapabiity,
and add the following syntax:

GenericCapability	::= SEQUENCE
{
	identifier	CapabilityIdentifier,
	parameters	CapabilityParameters OPTIONAL,
	maxBitRate	INTEGER (0..4294967295) OPTIONAL,	-- Units 100 bit/s
	...
}

CapabilityIdentifier	::= CHOICE
{
	standard	OBJECT IDENTIFIER,
				-- e.g. { itu-t (0) recommendation (0) h (8) 267 version (0) 2 }
	h221NonStandard	NonStandardParameter,
	uuid		OCTET STRING (SIZE (16)),	-- For non-standard
	...
}

CapabilityParameters	::= CHOICE
{
	nonCollapsing	OCTET STRING,	-- Typically contains ASN.1
					-- PER encoded data
					-- describing capability
	collapsing	SEQUENCE SIZE (1..512) OF CollapsingParameter,
	collapsingData	SEQUENCE
	{
		transport	DataProtocolCapability,
		automatic	SEQUENCE SIZE (1..512) OF CollapsingParameter OPTIONAL,
		...
	},
	...
}

�CollapsingParameter	::= SEQUENCE
{
	identifier	ParameterIdentifier,
	value		ParameterValue,
	supersedes	SEQUENCE SIZE (1..16) OF ParameterIdentifier OPTIONAL,
	...
}

ParameterIdentifier ::= CHOICE
{
	standard	INTEGER (0..65535),	-- Assigned by Capability
					-- specifications
	h221NonStandard	NonStandardParameter,	-- N.B NonStandardIdentifier is
					-- not sufficient in this case
	uuid		OCTET STRING (SIZE (16)),	-- For non-standard
	...
}

ParameterValue ::= CHOICE
{
	logical		NULL,		-- Only acceptable if all
						-- entities include this option
	unsignedMin	INTEGER (0..65535),-- Look for min common value
	unsignedMax	INTEGER (0..65535),-- Look for max common value
	unsigned32Min	INTEGER (0..4294967295), -- Look for min
	unsigned32Max	INTEGER (0..4294967295), -- Look for max
	...
}
The GenericCapability type allows new capabilities to be specified in such a way that it does not require a new version of H.245 to be issued. The scheme allows for both ITU-T standards based capability descriptions, and non ITU-T standards based capability descriptions (including proprietary capability descriptions) to be defined. ITU-T standards based capability descriptions may be included as Annexes to H.245, or in the recommendation that defines the capability. Non ITU-T standards capability descriptions may be published in any suitable form. The GenericCapability type also allows MCs to determine a highest common operating mode without having a detailed knowledge of the capability being used.
The capability description consists of an identifier field which specifies which capability is being defined, and a parameters field which specifies the separate capability parameters. The maxBitRate field describes the maximum rate at which the capability can operate when capabilities are exchanged, and the actual bit rate to be used when open logical channel signalling takes place. The maxBitRate field is defined separately so that intermediaries on the signalling path can have visibility of the bandwidths being used without having detailed knowledge of each capability.
The CapabilityIdentifier element allows both ITU-T standard based capabilities to be defined and non-ITU-T standard based capabilities to be defined.
The parameters of the capability can be described in one of three ways: nonCollapsing, collapsing, and collapsingData.
The nonCollapsing method of describing a capability involves defining a set of parameters that can be stored in an OCTET STRING. Typically this may consist of a ASN.1 PER encoded data structure. Note that an MC must have specific knowledge of capabilities described in this way to make use of them.
The collapsing method allows capabilities to be described in such a way that an MC can arbitrate between capability descriptions from multiple endpoints without having a detailed understanding of the capability’s meaning. The collapsing form of a capability description consists of a set of parameters, each of which has an identifier, a value and an optional supersedes field. The identifier field identifies the parameter, and the value stores the parameter’s value. The supersedes field allows a capability description to contain a group of parameters from which only one should be selected when a common capability description is determined. This might be the case for a video codec that supports SQCIF, QCIF and CIF resolutions with different minimum picture intervals. Multiple supersedes fields are included with a parameter so that a tree of parameter dependencies can be expressed as is found in the H.262 capability description.
The identifier field allows parameters to be defined that are either part of the defined capability description, or are proprietary extensions. The parameters defined in the capability description use the standard form which assigns a simple 16 bit value to a parameter. Parameters that are propriety extensions use either the h221NonStandard or uuid forms.
The value of each parameter can be represented in the following ways: logical, unsignedMin, unsignedMax, unsigned32Min, and unsigned32Max. The presence of a logical parameter indicates that the endpoint supports the option that the parameter represents. The unsignedMin and unsignedMax variants allow a parameter to be defined using an unsigned 16 bit integer. The unsigned32Min and unsigned32Max variants allow a parameter to be defined using an unsigned 32 bit integer. The difference between the min and max types is in how an MC treats them when building a common capability description.
To combine capability descriptions from multiple endpoints into a common capability description for a capability which an MC has no in built knowledge, an MC must first ignore any parameters which are not supported by all endpoints that the MC has decided are candidates for using a particular capability. Then, for each of the candidate endpoints’ parameters with the same identifier which are defined as unsignedMin or unsigned32Min, the MC should determine the minimum value. Similarly, the maximum of the parameters defined as unsignedMax and unsigned32Max should be found. If any of the resulting parameters includes the supersedes field, then the parameters that the superseding parameter supersedes should be ignored (Note that parameter values should not be completely discarded so that late joiners and leavers can be accommodated). Finally the minimum value of the maxBitRate parameter specified shall be taken.
The result of this operation is the common capability description. An MC which has in-built knowledge of a particular capability description may use its own set of rules to produce a common capability description.
When the common capability descriptions have been determined, an MC can evaluate the common capability set. Note that an endpoint can specify its preferences for different capabilities of the same class (such as video or audio), by giving the preferred mode a lower capabilityDescriptorNumber in the TerminalCapabilitySet.
The collapsingData method allows for data protocols that use different transport mechanisms to be readily defined. It allows data protocols to describe the transport mode that they use via the transport field and other parameters specific to the data protocol using the mechanisms used for a collapsing capability description. Note that data protocols are not restricted to using this form of description, and may use the nonCollapsing or collapsing forms if required.
APPENDIX VII
Appendix VII	Template for defining new codec capabilities

(This appendix does not form an integral part of this Recommendation)
This appendix defines a template for defining new codec capabilities that are expressed in the form of H.245 generic capabilities. It also provides an example of how this template could have been used to describe the H.261 codec, instead of the ASN.1 syntax that has been used in H.245. This new mechanism for defining capabilities in H.245 is intended to be used for all new capabilities that are added to H.245; it is not intended to be used to redefine existing capabilities.
Template
Capability Identifier
A single instance of this table shall be defined for each GenericCapability description.
Capability name:�The name of the codec, e.g. H.261��Capability class:�The class of the codec, e.g. video, audio etc.��Capability identifier type:�The type of the identifier that defines the codec: standard, h221NonStandard,or uuid.��Capability identifier value:�The value of the codec tag, e.g. { itu-t (0) recommendation (0) h (8) 261 version (0) 1 }��Capability parameter type:�Whether the parameter definitions are collapsing, collapsingData, or nonCollapsing. ��Capability Parameters
This section is only applicable when the capability parameter type is collapsing or collapsingData, in which case an instance of this table shall be defined for each CollapsingParameter. This table is not applicable when the capability parameter type is nonCollapsing
Note. This table does not allow the ParameterTag type (standard, h221NonStandard, or uuid) to be specified as it is only to be used for standard capability descriptions.

Parameter name:�The name of the parameter, e.g. cifMPI��Parameter description:�A descriptive name of the parameter, e.g. Specifies the minimum picture interval at CIF resolution��Parameter identifier value:�An integer 0..65535 that identifies this "standard" parameter��Parameter type:�The type of the parameter: logical, unsignedMin, unsignedMax, unsigned32Min, or unsigned32Max.��Supersedes:�The parameters that this parameter supersedes. This table element shall specify zero, 1 or more parameters that this parameter supersedes. The format shall be:�parameter-name "(" parameter-identifier-value ")", e.g. qcifMPI (0)��Example Template for H.245
H.261 Capability Identifier

Capability name:�ITU-T Recommendation H.261��Capability class:�Video codec.��Capability identifier type:�Standard.��Capability identifier value:�itu-t (0) recommendation (0) h (8) 261 version (0) 1��Capability parameter type:�Collapsing.��H.261 Capability Parameters
Note that there is no table for the maximum bit rate field that is found in the ASN.1 syntax of H.245 for H.261. This is because the maximum bit rate is given at the top level of the GeneriCapability structure.

Parameter name:�qcifMPI��Parameter description:�If present, this indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of QCIF pictures, and if not present, no capability for QCIF pictures is indicated.��Parameter identifier value:�0��Parameter type:�unsignedMax.��Supersedes:�-���
Parameter name:�cifMPI��Parameter description:�If present, this indicates the minimum picture interval in units of 1/29.97 for the encoding and/or decoding of CIF pictures, and if not present, no capability for CIF pictures is indicated.��Parameter identifier value:�1��Parameter type:�unsignedMax.��Supersedes:�qcifMPI (0)��
Parameter name:�temporalSpatialTradeOffCapability��Parameter description:�The presence of this parameter indicates that the encoder is able to vary its trade-off between temporal and spatial resolution as commanded by the remote terminal. It has no meaning when part of a receive capability.��Parameter identifier value:�2��Parameter type:�logical.��Supersedes:�-��
Parameter name:�stillImageTransmission��Parameter description:�The presence of this parameter indicates the capability for still images as specified in Annex D of H.261.��Parameter identifier value:�3��Parameter type:�logical.��Supersedes:�-��
Addition to support ISO/IEC 14496-2
In “ANNEX A, Messages: syntax” the following changes and additions are necessary.
1. In “Capability exchange definitions: Video capabilities”, on page 21, VideoCapability shall be changed to be:

VideoCapability	::=CHOICE
{
	nonStandard	NonStandardParameter ,
	h261VideoCapability	H261VideoCapability,
	h262VideoCapability	H262VideoCapability,
	h263VideoCapability	H263VideoCapability,
	is11172VideoCapability	IS11172VideoCapability,
	...,�	is14496VisualCapability	IS14496VisualCapability
}

2. At the end of the“Capability exchange definitions: Video capabilities” section, on page 25 the following shall be added (IS11172VideoCapability shown for reference only):

IS11172VideoCapability	::=SEQUENCE
{
	constrainedBitstream	BOOLEAN,
	videoBitRate	INTEGER (0.. 1073741823) OPTIONAL,	-- units 400 bit/s
	vbvBufferSize	INTEGER (0.. 262143) OPTIONAL,	-- units 16384 bits
	samplesPerLine	INTEGER (0..16383) OPTIONAL,	-- units samples/line
	linesPerFrame	INTEGER (0..16383) OPTIONAL,	-- units lines/frame
	pictureRate	INTEGER (0..15) OPTIONAL,	
	luminanceSampleRate	INTEGER (0..4294967295) OPTIONAL,	-- units samples/sec
	...
}

IS14496VisualCapability	::=SEQUENCE
{
	profileAndLevel	IS14496VisualProfileAndLevel,
	object		IS14496VisualObject OPTIONAL,
	decoderConfigurationInformation	OCTET STRING (SIZE(1..65535)) OPTIONAL,
	drawingOrder	INTEGER (0..65535) OPTIONAL,
	…
}

IS14496VisualProfileAndLevel	::=CHOICE
{
	simple 	INTEGER (1..3),
	simpleB-VopScalable 	INTEGER (1..2),
	core 		INTEGER (1..2),
	main 		INTEGER (1..3),
	bit12 		INTEGER (1..2),
	simpleScalableTexture 	INTEGER (1..2),
	simpleFA 	INTEGER (1..2),
	hybrid 		INTEGER (1..2),
	basicAnimation2Dtexture 	INTEGER (1..2),
	…
}

IS14496VisualObject	::=CHOICE
{
	simple		NULL,
	core		NULL,
	main		NULL,
	simpleScalable	NULL,
	bit12		NULL,
	basicAnimation2Dtexture	NULL,
	animation2Dmesh	NULL,
	simpleFace	NULL,
	simpleScalableTexture	NULL,
	coreScalableTexture	NULL,
	…
}

3. At the beginning of the “Request mode definitions: Video modes” section, on page 44, VideoMode shall be changed to be:

VideoMode		::=CHOICE
{
	nonStandard	NonStandardParameter,
	h261VideoMode	H261VideoMode,
	h262VideoMode	H262VideoMode,
	h263VideoMode	H263VideoMode,
	is11172VideoMode	IS11172VideoMode,
	...,
	is14496VisualMode	IS11496VisualMode
}

4. At the end of the “Request mode definitions: Video modes” section, on page 45, IS14496VisualMode shall be added (IS11172VideoMode shown for reference only):

IS11172VideoMode	::=SEQUENCE
{
	constrainedBitstream	BOOLEAN,
	videoBitRate	INTEGER(0..1073741823) OPTIONAL,	-- units 400bit/s
	vbvBufferSize	INTEGER(0..262143) OPTIONAL,	-- units 16384bits
	samplesPerLine	INTEGER(0..16383) OPTIONAL,	-- units samples/line
	linesPerFrame	INTEGER(0..16383) OPTIONAL,	-- units lines/frame
	pictureRate	INTEGER(0..15) OPTIONAL,
	luminanceSampleRate	INTEGER(0..4294967295) OPTIONAL,	-- units samples/sec
	...
}

IS14496VisualMode	::=SEQUENCE
{
	profileAndLevel	IS14496VisualProfileAndLevel,
	object		IS14496VisualObject OPTIONAL,
	…
}

5. At the end of the “ANNEX B Messages: semantic definitions” section, on page 78, the following semantics shall be added (IS11172 VideoCapability and TABLE B.�seq table�1�/H.245 shown for reference only):

IS11172 VideoCapability: indicates IS11172 [] capabilities.
constrainedBitstream indicates the capability for bitstreams in which constrained_parameters flag is set to "1": a value of true indicates that such operation is possible, while a value of false indicates that such operation is not possible. An encoder shall produce bitstreams within the limitations imposed by the optional fields (see below). A decoder shall be able to accept all bit streams within the limitations indicated by the optional fields. The optional fields are integers with units defined in Table B.�seq table is11172cap_tab�2�.

TABLE B.�seq table�2�/H.245
Units for IS11172-2 codepoints

ASN.1 Codepoint�Units for referenced parameter��videoBitRate�400 bit/s��vbvBufferSize�16384 bits��samplesPerLine�samples per line��linesPerFrame�lines per frame��pictureRate�refer to Section 2.4.3.2 of IS11172-2��luminanceSampleRate�samples per second��
is14496VisualCapability indicates IS14496-2 (MPEG-4 Visual Standard) capability as given in IS14496VisualCapability.
IS14496VisualCapability describes the IS14496-2 capabilities. For capability exchange, only profileAndLevel shall be specified. When opening a logical channel (forward or reverse), both profileAndLevel and object shall be specified, and decoderConfigurationInformation may be specified.
profileAndLevel indicates the capability of processing the particular profiles in combination with the level which is indicated by IS14496VisualProfileAndLevel.
object indicates the set of tools to be used by the decoder of the bitstream contained in the logical channel as given in IS14496VisualObject, where IS14496VisualObject is a choice of one of the listed objects.
decoderConfigurationInformation contains an octet string indicating how to configure the decoder for a particular object (bitstream) (refer to Annex L of IS14496-2).
drawingOrder indicates the drawing order of a visual object within a composition of (possibly overlaid) visual objects. The visual object having the lowest drawingOrder shall be drawn first. If visual objects have the same drawingOrder, the object corresponding to the logical channel with the lowest number shall be drawn first. If drawingOrder is not specified, it is set to 0.
IS11496VisualMode can optionally be used by a receiver to request a desired profileAndLevel and object configuration. The semantics of profileAndLevel and object are identical to that used in IS14496VisualCapability.
In some situations, it is necessary to associate certain visual objects. Since each visual object is contained in its own logical channel, accomplishing this can be done using the H.245 codepoint forwardLogicalChannelDependency in OpenLogicalChannel. The forward logical channel being opened is dependent on the logical channel indicated in forwardLogicalChannelDependency. Thus this codepoint can be used to signal the dependency of two or more logical channels.

END

�page �10�	Recommendation H.245

		Recommendation H.245	�page �9�

