

INTERNATIONAL TELECOMMUNICATION UNION����TELECOMMUNICATION�STANDARDIZATION SECTOR

STUDY PERIOD 1993 - 1996�TD- -E

May 1996

Original: English���

Question 2/15

STUDY GROUP 15 - CONTRIBUTION

SOURCE* :		RAPPORTEUR FOR Q.2/15 (Richard SCHAPHORST)

TITLE:		EDITORIAL CHANGES, TECHNICAL DEFECTS, AND PROPOSED 	ADDITIONS TO RECOMMENDATION H.245

This document details the changes required to be made to the November 1995 approved version of H.245 (h245ncm4.doc) in order to create the corrected version 1 of H.245.

The changes required are given in the attached document from the April LBC meeting (LBC-96-086R2) together with a few extra items detected since that meeting. These extra items are given below:

1. In Item 3 of the LBC defect report BPPmaxKb should be changed to bppmaxKb.

2. In Item 29 of the LBC defect report under ModeElement, v76Mode should be changed to v76ModeParameters.

3. In Section 6, Page 17 of H.245, jbig200x200Progr should be jbig200x200Prog.

4. In Section 8.9.1 of H.245 and extra paragraph has been added -

Note. The request mode description specifies a complete mode. If, for example, video is currently being transmitted and a mode request is received that does not include any specification for video, then this requests video transmission to stop.

Attachment: LBC-96-086R2

�

INTERNATIONAL TELECOMMUNICATION UNION����TELECOMMUNICATION�STANDARDIZATION SECTOR

STUDY PERIOD 1993 - 1996�LBC-96-86R2

April 23-26, 1996, Dallas

Original: English���

Question 2/15

SOURCE* :		RAPPORTEUR FOR Q.2/15 (Richard SCHAPHORST)

TITLE:			EDITORIAL CHANGES, TECHNICAL DEFECTS, AND PROPOSED ADDITIONS TO RECOMMENDATION H.245

This contribution identifies 21 Editorial Changes, 8 Technical Defects, and 2 Proposed Technical Addtions to Recommendation H.245 "Control protocol for multimedia communication" which was approved on 19 March 1996 following the "decision" at the Study Group 15 meeting in November 1995, and proposes means to remove them. Study Group 15 is requested to make these corrections valid at the earliest occasion according to Section 8 of RESOLUTION No. 1.

���autonumlgl � Protocol Identifier (Section 6, Page 11) - Editorial

The value of the protocol identifier is incorrect: 'itu' should be 'itu-t'. As the coding of this element has caused confusion, it is recommended that coded values are included in brackets. The following syntax change is required.

TerminalCapabilitySet	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	protocolIdentifier	OBJECT IDENTIFIER,

				-- shall be set to the value

				-- {itu recommendation h 245 version (0) 1}

				-- {itu-t (0) recommendation (0) h (8) 245 version (0) 1}

	multiplexCapability	MultiplexCapability OPTIONAL,

	capabilityTable	SET SIZE (1..256) OF CapabilityTableEntry OPTIONAL,

	capabilityDescriptors	SET SIZE (1..256) OF CapabilityDescriptor OPTIONAL,

	...

}

�autonumlgl � VCCapability (Section 6, Page 12) - Technical Defect

The syntax of VCCapability is such that it only allows a terminal to specify that it has AAL1 and AAL5 capability, and not just one of them. This can be corrected by making both of these elements OPTIONAL as shown below. Note: there is some capability to do this already by setting all the AAL1 parameters to FALSE, or the AAL5 SDU sizes to zero, but this is not a good solution.

VCCapability	::=SEQUENCE

{

	aal1		SEQUENCE

	{

		nullClockRecovery	BOOLEAN,

		srtsClockRecovery	BOOLEAN,

		adaptiveClockRecovery	BOOLEAN,

		nullErrorCorrection	BOOLEAN,

		longInterleaver	BOOLEAN,

		shortInterleaver	BOOLEAN,

		errorCorrectionOnly	BOOLEAN,

		structuredDataTransfer	BOOLEAN,

		partiallyFilledCells	BOOLEAN,

		...

	} OPTIONAL,

	aal5		SEQUENCE

	{

		forwardMaximumSDUSize	INTEGER (0..65535),	-- units octets

		backwardMaximumSDUSize	INTEGER (0..65535),	-- units octets

		...

	} OPTIONAL,

	transportStream	BOOLEAN,

	programStream	BOOLEAN,

	availableBitRates	SEQUENCE

	{

		type	CHOICE

		{

			singleBitRate	INTEGER (1..65535),	-- units 64 kbits per second

			rangeOfBitRates	SEQUENCE

			{

				lowerBitRate	INTEGER (1..65535),	-- units 64 kbits per second

				higherBitRate	INTEGER (1..65535)	-- units 64 kbits per second

			}

		},

		...

	},

	...

}

The semantics (section 7.2.2.4, page 37) for these fields should be corrected as below.

The sequence aal1, when present, indicates the capability for ATM adaptation layer 1, and which of its options indicates which of the options for ATM adaptation layer 1, as specified in I.363 [�seq reference i363_ref�19�], are supported. The codepoints are defined in Table �seq table aal1_cap_tab�1�.

The sequence aal5, when present, indicates the capability for ATM adaptation layer 5, and which of its options indicates which of the options for ATM adaptation layer 5, as specified in I.363 [�seq reference i363_ref�19�], are supported. forwardMaximumSDUSize and backwardMaximumSDUSize indicate the maximum CPCS-SDU size in the forward and reverse directions, measured in octets.

Either aal1 or aal5 or both shall be present.

�autonumlgl � H.263 Maximum Bit Rate capability (Section 6, Page 14) - Editorial / Technical Defect

This is currently represented as an integer in the range 1..192400. This is a typing mistake and should be 1..19200. This would make it consistent with H263VideoMode, H261VideoCapability and H261VideoMode.

The following syntax change is required.

H263VideoCapability	::=SEQUENCE

{

	sqcifMPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	qcifMPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	cifMPI		INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	cif4MPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	cif16MPI	INTEGER (1..32) OPTIONAL,	-- units 1/29.97 Hz

	maxBitRate	INTEGER (1..19240019200),	-- units 100 bits/s

	unrestrictedVector	BOOLEAN,

	arithmeticCoding	BOOLEAN,

	advancedPrediction	BOOLEAN,

	pbFrames	BOOLEAN,

	temporalSpatialTradeOffCapability	BOOLEAN,

	hrd-B		INTEGER (0..524287) OPTIONAL,	-- units 128 bits

	BPPmaxKb	INTEGER (0..65535) OPTIONAL,	-- units 1024 bits

	...

}

�autonumlgl � General String (Section 6, Page 34) - Technical Defect

The UserInputIndication alphanumeric is currently coded as a GeneralString. This is not recommended. The implications of this coding have only recently become known.

The following is a comment from an ASN.1 expert on the choice of GeneralString: 'Egads! That is a MAJOR mistake (IMHO). I strongly suggested that either IA5String or BMPString be used instead of GeneralString. The industry has been moving away from the use of variable width character string types, such as GeneralString, because of how difficult it is to process them. Is it too late to change this?'

The following syntax change should be made.

UserInputIndication	::=CHOICE

{

	nonStandard	NonStandardParameter,

	alphanumeric	GeneralStringIA5String,

	...

}

�autonumlgl � Function Not Supported (Section 6, Page 32, Section 7.10.1, Page 57) - Technical Defect

The semantics of this function are unclear and have caused confusion: when should it be used? A major problem also exists: the intention is to return the whole encoded message when a message that is not understood at all, because of extensions added to RequestMessage, ResponseMessage or CommandMessage, but unrecognised extensions can not be returned as encoded syntax with guaranteed accuracy as the syntax is not understood and may require different stuffing to achieve byte alignment than the original message.

Errors may also occur due to the incorrect encoding of a message, or a correct encoding with incorrect values. It would be beneficial to enable the FunctionNotSupported message to be used in this case.

The following syntax changes are therefore required.

FunctionNotSupported	::=CHOICESEQUENCE

{

	request	RequestMessage,

	response	ResponseMessage,

	command	CommandMessage

	cause		CHOICE

	{

		syntaxError	NULL,

		semanticError	NULL,

		unknownFunction	NULL,

		...

	},

	returnedFunction	OCTET STRING OPTIONAL,

	...

}

The semantics for FunctionNotSupported need to be modified to make them more clear and to describe the new syntax as follows.

�seq section \c�7�.�seq sub_section\c�10�.�seq sub_sub_section�1��seq sub_sub_sub_section \r 0 \h�	Function Not Supported

This is used to return requests, responses and commands that are not understood back to the transmitter of them.

The whole of the RequestMessage, ResponseMessage or CommandMessage is returned.

If a terminal receives a request, response or command that it does not understand, either because it is non-standard or has been defined in a subsequent revision of this Recommendation, it shall respond by sending FunctionNotSupported.

If a terminal receives a request, response or command that has incorrect encoding, it shall set cause to the value syntaxError. If it has correct encoding, but the encoded values are semantically incorrect, it shall set cause to the value semanticError. If the message is an unrecognised extension to MultimediaSystemControlMessage, RequestMessage, ResponseMessage or CommandMessage, it shall set cause to the value unknownFunction.

In each case, the whole MultimediaSystemControlMessage should be returned as an octet string in returnedFunction.

FunctionNotSupported shall not be used at any other time. In particular, when an unrecognised extension is present at other points in the syntax, FunctionNotSupported shall not be used: the terminal shall respond to the message in the normal way, as if no extension were present. FunctionNotSupported shall never be sent in response to a received indication.

�autonumlgl � logicalChannelNumber in Miscellaneous Command and Indication (Sections 7.9.5, 7.10.2, Pages 52-53) - Editorial

The usage of the logicalChannelNumber for this function is unclear to some commands and indications where multiple logical channels are involved. In order to ensure interoperability, without requiring any changes in the ASN.1 syntax for miscellaneous commands, section 7.9.5 should be clarified by changing the second paragraph to the following:

ÒlogicalChannelNumber indicates the logical channel number to which the command applies. It shall indicate a logical channel opened for video data when the type is one of videoFreezePicture, videoFastUpdatePicture, videoFastUpdateGOB, videoTemporalSpatialTradeOff, videoSendSyncEveryGOB, and videoSendSyncEveryGOBCancel. When the type is one of equaliseDelay, zeroDelay, multipointModeCommand or cancelMultipointModeCommand where multiple logical channels are involved, the logicalChannelNumber shall be arbitrary, but shall be a valid LogicalChannelNumber (i.e. in the range 1-65535) and the receiver shall ignore the value.Ó

Similarly, section 7.10.2 should be clarified by changing the second paragraph to the following:

ÒlogicalChannelNumber indicates the logical channel number to which the indication applies. It shall indicate a logical channel opened for video data when the type is videoIndicateReadyToActivate, and videoTemporalSpatialTradeOff. When the type is one of multipointConference, cancelMultipointConference, multipointZeroComm, cancelMultipointZeroComm, multipointSecondaryStatus, or cancelMultipointSecondaryStatus where multiple logical channels are involved, the logicalChannelNumber shall be arbitrary, but shall be a valid LogicalChannelNumber (i.e. in the range 1-65535) and the receiver shall ignore the value.Ó

�autonumlgl � Master Slave Determination (Section 8.2.4.5, Page 72) - Technical Defect

The text in section 8.2.1.4 states that the terminal that has the larger terminalType number becomes the master terminal. Although this is only informative text, this assumption has been written into H.324 as a note to say that the terminal with the larger number is the master, and into H.323 where many values have been allocated to different terminal types to ensure which one becomes master in a particular circumstance. It was also the original intention, and logical, that the master terminal should be the one with the larger number.

Figure 4(v) defines the decision formally. It defines the master as the terminal with the smaller number. This should be changed. For consistency, the decision in case of equal terminalTypes should also be reversed. The following change should therefore be made.

The two '>' signs in Figure 4(v) should be changed to '<' signs.

�autonumlgl � B-LCSE ESTABLISH.confirm default values (Section 8.5.4.2, Page 101; Section 8.5.2.3, Page 92) - Editorial

The ESTABLISH.confirm primitive is missing from Table 33. This should be corrected as follows.

TABLE �seq table�
1
�/H.245

Default primitive parameter values

primitive�parameter�default value 1��ESTABLISH.indication�FORWARD_PARAM�OpenLogicalChannel.forwardLogicalChannelParameters���REVERSE_PARAM�OpenLogicalChannel.reverseLogicalChannelParameters��ESTABLISH.confirm�REVERSE_DATA�OpenLogicalChannelAck.reverseLogicalChannelParameters��RELEASE.indication�SOURCE�CloseLogicalChannel.source���CAUSE�null��Notes:

1.	A primitive parameter shall be coded as null, if an indicated message field is not present in the message.

Related to this, description of Section 8.5.2.3 c) which contradicts the other part need be corrected.

c)	The REVERSE_DATA parameter specifies some parameters associated with the reverse logical channel, that is, from the terminal containing the incoming B-LCSE to the terminal containing the outgoing B-LCSE. This parameter is mapped to the appropriate fields of the reverseLogicalChannelParameters field of the OpenLogicalChannelAck message and is carried transparently to the peer B-LCSE user. reverseLogicalChannelNumber is the only field of the reverseLogicalChannelParameters field that is not contained in the REVERSE_DATA parameter: its value is assigned by the B-LCSE.

�autonumlgl � B-LCSE In-coming SDL (Section 8.5.4.5, Page 107) - Technical Defect

OpenLogicalChannelConfirm arriving in the AWAITING ESTABLISHMENT state at the incoming B-LCSE is correctly identified as an error condition. However what action should be taken? Currently CloseLogicalChannelAck is sent. This is not in line with correct approach of keeping incoming side passive. Clean up should be a user issue, for example, the close logical channel signalling entity could be used to request a closure, as occurs for timer expiry in the AWAITING CONFIRMATION state.

The following is recommended.

In Figure 19(ii), in the branch on the right hand side for OpenLogicalChannelConfirm, the box with CloseLogicalChannelAck should be removed so that this message is no longer sent in this case.

�autonumlgl � Protocol overview disclaimers (Section 8.6.1, Page 109, and Section 8.8.1, Page 128) - Editorial

All protocol definitions are preceded by an overview, which is purely informative. All protocols except those defined in sections 8.6 and 8.8 are preceded by the same disclaimer. The following disclaimer should be added to the end of 8.6.1 and to the end of 8.8.1.

The following text provides an overview of the operation of the protocol. In the case of any discrepancy with the formal specification of the protocol that follows, the formal specification will supersede.

�autonumlgl � H.223 Multiplex Table procedures: references to syntax (Section 8.7, Pages 117-122) - Editorial

There are various occurrences throughout section 8.7 where reference is made incorrectly to syntax elements. The errors are only editorial as the intentions are clear. For example, the parameter MUX-DESCRIPTOR is carried in the MultiplexEntrySend.multiplexEntryDescriptor.elementList field of the MultiplexEntrySend message. Section 6 says that MultiplexEntryDescriptor is made up of two fields; multiplexTableEntryNumber and elementList. The former is set by the state variable out_ENUM, while the later is set by the MUX-DESCRIPTOR parameter. The procedures need to recognise these two fields.

The following changes are needed to correct this.

Section 8.7.2.3:

a)	The MUX-DESCRIPTOR parameter is a multiplex table entry. This parameter is mapped to the MmultiplexEntryDescriptor.elementList field of the mMultiplexEntrySend message and carried transparently from the MTSE user at the out-going MTSE to the MTSE user at the in-coming MTSE. There may be multiple MUX-DESCRIPTORs associated with the TRANSFER primitive.

�Table 42:

TABLE �seq table�42�/H.245

MTSE message names and fields

function�message�direction�field��transfer�MultiplexEntrySend�O -> I 1�sequenceNumber�����multiplexEntryDescriptors.multiplexTableEntryNumber�����multiplexEntryDescriptors.elementListMultiplexElement���MultiplexEntrySendAck�O <- I�sequenceNumber�����multiplexTableEntryNumber��reject�MultiplexEntrySendReject�O <- I�sequenceNumber�����multiplexTableEntryNumber�����rejectionDescriptions.cause��reset�MultiplexEntrySendRelease�O -> I�multiplexTableEntryNumber��Notes:

1.	Direction: O - out-going, I - in-coming.

Table 43:

TABLE �seq table�43�/H.245

Default primitive parameter values

primitive�parameter�default value��TRANSFER.indication�MUX-DESCRIPTOR�MultiplexEntrySend.MmultiplexEntryDescriptors.elementList��REJECT.indication�SOURCE�USER���CAUSE�null��

�Table 44:

TABLE �seq table�44�/H.245

Default message field values

message�field�default value 1��MultiplexEntrySend�sequenceNumber�out_SQ���multiplexEntryDescriptors.multiplexTableEntryNumber�out_ENUM���multiplexEntryDescriptors.elementListMultiplexElement�TRANSFER.request(MUX-DESCRIPTOR)��MultiplexEntrySendAck�sequenceNumber�in_SQ���multiplexTableEntryNumber�in_ENUM��MultiplexEntrySendReject�sequenceNumber�in_SQ���rejectionDescriptions.multiplexTableEntryNumber�in_ENUM���rejectionDescriptions.cause�REJECT.request(CAUSE)��MultiplexEntrySendRelease�multiplexTableEntryNumber�out_ENUM��

Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

�autonumlgl � Request Multiplex Entry procedures: clarification (Section 8.8.1, Pages 128) - Editorial

There has been confusion about the relationship between the definition of the protocol as a set of 15 independent entities, and the syntax that allows messages to refer to more than one entity. It is proposed here to add the following note to the end of 8.8.1 (i.e. just before 8.8.1.1) to clarify the specification.

NOTE. This protocol has been defined so that there is an independent RMESE for each multiplex table entry,and the syntax has been defined to allow a single message to carry information relating to one or more multiplex table entries. The way that messages are constructed is an implementation decision: for example, a terminal may respond to a RequestMultiplexEntry message requesting three entries to be sent with one, two or three response messages.

�autonumlgl � Request Multiplex Entry procedures: references to syntax (Section 8.8, Pages 128-132) - Technical Defect / Editorial

There are various occurences throughout section 8.8 where reference is made incorrectly to syntax elements. The errors are only editorial as the intentions are clear. These errors are of the same type as described above for section 8.7

In addition, the syntax in section 6 should be changed so that entryNumbers is replaced by multiplexTableEntryNumber for consistency. This is purely editorial, and tables 46 and 48 already use this notation. There is another change needed here: entryNumbers is present twice in RequestMultiplexEntryReject, and the first occurence should be removed by analogy to MultiplexEntrySendReject. The following syntax change is therefore required.

RequestMultiplexEntry	::=SEQUENCE

{

	multiplexTableEntryNumberentryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

RequestMultiplexEntryAck	::=SEQUENCE

{

	multiplexTableEntryNumberentryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

RequestMultiplexEntryReject	::=SEQUENCE

{

	entryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	rejectionDescriptions	SET SIZE (1..15) OF RequestMultiplexEntryRejectionDescriptions,

	...

}

RequestMultiplexEntryRejectionDescriptions	::=SEQUENCE

{

	multiplexTableEntryNumber	MultiplexTableEntryNumber,

	cause		CHOICE

	{

		unspecifiedCause	NULL,

		...

	},

	...

}

RequestMultiplexEntryRelease	::=SEQUENCE

{

	multiplexTableEntryNumberentryNumbers	SET SIZE (1..15) OF MultiplexTableEntryNumber,

	...

}

Corresponding changes need to be made to the semantics, as follows.

7.5�seq sub_sub_section \r 0 \h
�	Request Multiplex Table signalling messages

This set of messages is for the secure request of retransmission of one or more MultiplexEntryDescriptors from the transmitter to the receiver.

7.5.1�seq sub_sub_sub_section \r 0 \h
��seq sub_sub_sub_section \r 0 \h
�	Request Multiplex Entry

This is used to request the retransmission of one or more MultiplexEntryDescriptors.

multiplexTableEntryNumberentryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors for which retransmission is requested.

7.5.2�seq sub_sub_sub_section \r 0 \h
�	Request Multiplex Entry Acknowledge

This is used by the in-coming RMESE to indicate that the multiplex entry will be transmitted.

multiplexTableEntryNumberentryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors that will be transmitted.

7.5.3�seq sub_sub_sub_section \r 0 \h
�	Request Multiplex Entry Reject

This is used by the in-coming RMESE to indicate that the multiplex entry will not be transmitted.

entryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors will not be transmitted.

RequestMultiplexEntryRejectionDescriptions specifies which table entries are being rejected, and why. The causes of rejection are given in Table 10.

�

TABLE 10/H.245

Reasons for rejecting a MultiplexEntrySend

ASN.1 codepoint�Cause��unspecified�No cause for rejection specified.��

7.5.4�seq sub_sub_sub_section \r 0 \h
�	Request Multiplex Entry Release

This is sent by the out-going RMESE in the case of a time out.

multiplexTableEntryNumberentryNumbers is a list of the MultiplexTableEntryNumbers of the MultiplexEntryDescriptors for which time-out has occurred.

The following changes are needed to correct section 8.8.

Table 46:

TABLE �seq table�46�/H.245

RMESE message names and fields

function�message�direction�field��transfer�RequestMultiplexEntry�O -> I 1�multiplexTableEntryNumber���RequestMultiplexEntryAck�O <- I�multiplexTableEntryNumber���RequestMultiplexEntryReject�O <- I�rejectionDescriptions.multiplexTableEntryNumber�����rejectionDescriptions.cause��reset�RequestMultiplexEntryRelease�O -> I�multiplexTableEntryNumber-��Notes:

1.	Direction: O - out-going, I - in-coming.

Table 48:

TABLE �seq table�48�/H.245

Default message field values

message�field�default value��RequestMultiplexEntry�multiplexTableEntryNumber�out_ENUM��RequestMultiplexEntryAck�multiplexTableEntryNumber�in_ENUM��RequestMultiplexEntryReject�rejectionDescriptions.multiplexTableEntryNumber�in_ENUM���rejectionDescriptions.cause�REJECT.request(CAUSE)��RequestMultiplexEntryRelease�multiplexTableEntryNumber�out_ENUM��

Figure 33(ii)

In figure 33(ii), while NULL may well be the only current valid entry of the cause field, the SDL should be generalised, so that new additions of the cause field values will not change the SDLs. The following change should therefore be made.

In Figure 33 (ii), for the REJECT.indication primitive in the RequestMultiplexEntryReject message part, there should be the text caption “CAUSE = RequestMultiplexEntryReject.cause”.

�autonumlgl � Mode Request CAUSE primitive definition (Section 8.9.2.3, Page 136) - Editorial

This is definition is currently incorrect due to a copy and paste editting error. The text should be corrected as below:

d)	The CAUSE parameter indicates the reason for refusal to close a logical channelreject a mode request. The CAUSE parameter is not present when the SOURCE parameter indicates "PROTOCOL".

�autonumlgl � Round Trip Delay Determination (Section 8.1.3, Page 60 and Section 8.10.4.2, Page 147) - Editorial

The text in section 8.1.3 is inconsistent. It states that timers are loaded with a value and count down to zero, but timer expiry occurs when the timer reaches its specified value. As counting down is standard procedure, and has been drawn into the diagrams in Appendix II, this should be rewritten as follows.

A timer is identified by the notation Tn, where n is a number. In the SDL diagrams setting a timer means that a timer is loaded with a specified value and the timer is started. Resetting a timer means that a timer is stopped with its value at the time of reset being retained. Timer expiry means that a timer has run for its specified time and has reached its specified the value of zero.

In section 8.10.4.2, Table 55 indicates that DELAY has the default value of the value of timer T105. This parameter indicates the round trip delay, that is, how long the timer has been running. This value is therefore wrong: the 'inverse' is needed. The entry in Table 55 should be changed, and a note added, as follows.

Change 'value of timer T105' in Table 55 to 'initial value of timer T105 - value of timer T105'.

The following note should be added after the table: 'Note. Timers are defined to count down to zero. The DELAY parameter indicates the time that the timer has been running, and so has the value of the difference between the initial setting and the retained value of the timer.'

�autonumlgl � Maintenance Loops: LOOP_TYPE not stored (Section 11, Pages 150-155) - Technical Defect

Section 8.11 currently has no means to store the LOOP_TYPE value between when the MaintenanceLoopRequest message is received, and when the MaintenanceLoopAck message is sent in response. This can be solved by including an incoming side state variable that stores the value of LOOP_TYPE when the MaintenanceLoopRequest message is received. This state variable assists in setting the value of the type field in the MaintenanceLoopAck message.

The following changes should be made.

Section 8.11.2.3

a)	The LOOP_TYPE parameter specifies the parameters associated with the maintenance loop. It has values of “SYSTEM”, “MEDIA”, and “LOGICAL_CHANNEL”. This parameter, and the logical channel number, determine the value of is mapped to the type field of the MaintenanceLoopRequest message andwhich is then carried transparently to the peer MLSE user.

Section 8.11.3.2

The following state variable is defined at the out-going MLSE:

out_MLN

This state variable distinguishes between out-going MLSEs. It is initialised at out-going MLSE initialisation. The value of out_MLN is used to set the type field of MaintenanceLoopRequest messages sent from an out-going MLSE.

The following state variable is defined at the in-coming MLSE:

in_MLN

This state variable distinguishes between in-coming MLSEs. It is initialised at in-coming MLSE initialisation. For MaintenanceLoopRequest messages received at an in-coming MLSE, the message type field value is consistent with the value of in_MLN.

Note. There is a pair of out-going and in-coming MLSEs for each bi-directional logical channel, and for the system loop. These state variables are used to distinguish these different MLSEs. The LOOP_TYPE parameter associated with the LOOP.request primitive is used to indicate the type of loop, mediaLoop or logicalChannelLoop, that is requested.

in_TYPE

This state variable stores the value of LOOP_TYPE when the MaintenanceLoopRequest is received. This state variable assists in setting the value of the type field in the MaintenanceLoopAck message.

Table 60:

TABLE �seq table�60�/H.245

Default message field values

message�field�default value 1��MaintenanceLoopRequest�type�LOOP.request(LOOP_TYPE) and out_MLN2��MaintenanceLoopAck�type�in_LOOP and in_MLN3��MaintenanceLoopReject�type�in_LOOP and in_MLN3���cause�RELEASE.request(CAUSE)��MaintenanceLoopOffCommand�-�-��Notes:

1.	A message field shall not be coded, if the corresponding primitive parameter is null i.e. not present.

2.	The value of the type field is derived from the LOOP_TYPE parameter and the logical channel number.

3.	The value of the type field is derived from the in_LOOP and in_MLN state variables.

�autonumlgl � Object Identifier Encoding: Informative Text (Section I.4, Page 164) - Editorial

There has been confusion about the encoding of object identifiers. This can be clarified by the following change to Appendix I.

Normally the type of a value is given in the ASN.1 specification so that the only information that needs to be coded and transmitted is the data itself. Occasionally, however, it is desirable to encode the data type as well as the data value. For example, NonStandardIdentifierprotocolIdentifier contains

	object		OBJECT IDENTIFIER

	protocolIdentifier	OBJECT IDENTIFIER,

				-- shall be set to the value

				-- {itu-t (0) recommendation (0) h (8) 245 version (0) 1}

This is encoded as the data encoded with the BER (X.690) preceded by the length of that encoding in octets. The length is encoded as a semi-constrained whole number (see the OCTET STRING example above). The following illustrates how this is encoded.

The first octet indicates the length of the encoding that follows.

The first two components of the object identifier are combined together as 40*first one + second one, in this case 40*0+0 = 0. The others are encoded as they are. Each is encoded into a series of octets, the first bit of which indicates whether there is any more. So

	0 -> 0000 0000,

	8 -> 0000 0100,

while 245, being more than 127 becomes 1000 0001 0111 0101,

So the entire encoding in hexadecimal consists of the seven octets 06000881 750001

�autonumlgl � Protocol Identifier needs to be changed in Annex A (Table A-1, Page 160) - Editorial

The object identifier in table A-1 should be changed to match the changes made in section 1 of this document.

Table A-1

Object Identifier Value�Description��{itu-t (0) recommendation (0) h (8) 245 version (0) 1}�This Object Identifier is used to indicate the version of this Recommendation in use as a multimedia system control protocol. At this time there is a single standardised version defined.��

�autonumlgl � Bi-directional logical channel signalling procedures (Section 8.5.1, Page 95) - Editorial

Section 8.5.1 has caused some confusion about the operation of bi-directional logical channels. The following edits have been made to clarify section 8.5.1.

�seq section \c�
0
�.�seq sub_section\c�
0
�.�seq sub_sub_section�
1
��seq sub_sub_sub_section \r 0 \h
�	Introduction

The protocol specified here provides reliable opening and closing of bi-directional logical channels using acknowledged procedures.

The protocol specified here is referred to as the Bi-directional Logical Channel Signalling Entity (B-LCSE). Procedures are specified in terms of primitives at the interface between the B-LCSE and the B-LCSE user, and B-LCSE states. Protocol information is transferred to the peer B-LCSE via relevant messages defined in section 6.

There is an out-going B-LCSE and an in-coming B-LCSE. At each of the out-going and in-coming sides there is one instance of the B-LCSE for each bi-directional logical channel. There is no connection between an in-coming B-LCSE and an out-going B-LCSE at one side, other than via primitives to and from the B-LCSE user. B-LCSE error conditions are reported.

A bi-directional logical channel consists of a pair of associated uni-directional channels. 'Forward' (Out-going side) is used to refer to transmission in the direction from the terminal making the request for a bi-directional logical channel to the other terminal, and 'reverse' (In-coming side) is used to refer to the opposite direction of transmission.

Data shall only be sent on a bi-directional logical channel in the ESTABLISHED state. However, data may be received on the forward channel when the in-coming B-LCSE is in the AWAITING CONFIRMATION state. Data that is received while in other states than the ESTABLISHED state and the AWAITING CONFIRMATION state shall be discarded and no fault shall be considered to have occurred.

A terminal may reject a request to open a bi-directional logical channel solely because it can not support the requested reverse channel parameters. In this case it shall reject the request with cause equal to unsuitableReverseParameters, and shall immediately initiate procedures to establish a bi-directional logical channel as requested by the remote terminal, in which the reverse parameters are identical to the forward parameters of the remote terminal's failed request, and with forward parameters that the terminal can support and which the remote terminal is known to be able to support.

Mode switching should be performed by closing and opening existing logical channels, or by opening new logical channels.

Note. Some recommendations that use this Recommendation may define some default logical channels. These shall be considered ESTABLISHED from the start of communication and shall not be opened using these procedures. They may, however, be closed by these procedures, and subsequently be re-opened for the same or a different purpose.

A terminal that is no longer capability capable of processing the signals on a logical channel should take appropriate action: this should include closing the logical channel and transmitting the relevant (changed) capability information to the remote terminal.

The following text provides an overview of the operation of the B-LCSE protocol. In the case of discrepancy between this and the formal specification, the formal specification will supersede.

�autonumlgl � Error in B-LCSE message names and fields table (Table 32, Page 100) - Editorial

TABLE �seq table�
8
�/H.245

B-LCSE message names and fields

function�message�direction�field��establishment�OpenLogicalChannel�O -> I 1�forwardLogicalChannelNumber�����forwardLogicalChannelParameters�����reverseLogicalChannelParameters���OpenLogicalChannelAck�O <- I�forwardLogicalChannelNumber�����reverseLogicalChannelParameters���OpenLogicalChannelReject�O <- I�forwardLogicalChannelNumber�����cause���OpenLogicalChannelConfirm�O <- I

 O -> I�forwardLogicalChannelNumber��release�CloseLogicalChannel�O -> I�forwardLogicalChannelNumber�����source���CloseLogicalChannelAck�O <- I�forwardLogicalChannelNumber��Notes:

1.	Direction: O - out-going, I - in-coming.

�autonumlgl � Clarification of Close Logical Channel Procedures (Section 8.6.1, Page 109) - Editorial

�seq section \c�
0
�.�seq sub_section\c�
0
�.�seq sub_sub_section�
2
��seq sub_sub_sub_section \r 0 \h
�	Introduction

These procedures are used by a terminal to request the remote terminal to close a closure of an in-coming logical channel. Note that these are only close request procedures; the actual logical channel close occurs using the LCSE and B-LCSE procedures. The procedures are referred to here as the Close Logical Channel Signalling Entity (CLCSE). Procedures are specified in terms of primitives and states at the interface between the CLCSE and the CLCSE user. Protocol information is transferred to the peer CLCSE via relevant messages defined in section 6. There is an out-going CLCSE and an in-coming CLCSE. At each of the out-going and in-coming ends there is one instance of the CLCSE for each logical channel.

�autonumlgl � Add Definitions (Section 3, Page 3) - Proposed Editorial Addition

The following terms are used throughout the document, but are not formally defined.

Forward: Forward is used to refer to transmission directed from the terminal making the request for a bi-directional logical channel to the other terminal.

Reverse: Reverse is used to refer to transmission directed from the terminal receiving a request for a bi-directional logical channel to the terminal making the request.

Out-going: An Out-going Signaling Entity is one which initiates a procedure.

In-coming: An In-coming Signaling Entity cannot initiate a procedure, but responds to messages from the remote Signaling Entity and its own user’s primitives.

�autonumlgl � Additional Timing Diagrams for Bi-directional procedures (Appendix II, Section II.9) - Proposed Editorial Addition

II.9.	Bi-directional Logical Channel Signalling Entity

The following figures illustrate B-LCSE procedures. The out-going B-LCSE states of RELEASED, AWAITING ESTABLISHMENT, ESTABLISHED, and AWAITING RELEASE are labelled as "0", "1", "2", and "3" respectively. The in-coming B-LCSE states of RELEASED, AWAITING ESTABLISHMENT, AWAITING CONFIRMATION, and ESTABLISHED, are labelled as "0", "1", "2", and "3" respectively.

� EMBED Word.Picture.6 ���

FIGURE II.9-1/H.245

Bi-directional logical channel establishment

� EMBED Word.Picture.6 ���

FIGURE II.9-2/H.245

Bi-directional logical channel release

� EMBED Word.Picture.6 ���

FIGURE II.9-3/H.245

Bi-directional logical channel establishment rejection by peer B-LCSE user

� EMBED Word.Picture.6 ���

FIGURE II.9-4/H.245

Bi-directional logical channel release followed by immediate re establishment

� EMBED Word.Picture.6 ���

FIGURE II.9-5/H.245

Bi-directional logical channel establishment request with expiry of timer T103 at the out-going side due to slow response from peer in-coming B-LCSE user.

� EMBED Word.Picture.6 ���

FIGURE II.9-6/H.245

Bi-directional logical channel establishment request with expiry of timer T103 at the out-going side. Timer T013 at the out-going side has expired after transmission of the OpenLogicalChannelAck message at the in-coming B-LCSE, but before reception of the OpenLogicalChannelAck message at the out-going B-LCSE.

� EMBED Word.Picture.6 ���

FIGURE II.9-7/H.245

Bi-directional logical channel release request with expiry of timer T103 at the out-going side.

�autonumlgl � Missing OpenLogicalChannelConfirm Message (Figure 17, Section 8.5.4.1, Page 101) - Editorial

In FIGURE 17 add OpenLogicalChannelConfirm to the messages sent from the Out-going B-LCSE to the In-coming B-LCSE.

�autonumlgl � NonStandardParameter Missing Extension Marker (Section 6, Page 9) - Proposed Technical Addition

NonStandardParameter	::=SEQUENCE

{

	nonStandardIdentifier	NonStandardIdentifier,

	data		OCTET STRING,

	…

}

NonStandardIdentifier	::=CHOICE

{

	object		OBJECT IDENTIFIER,

	h221NonStandard	SEQUENCE

	{

		t35CountryCode	INTEGER (0..255),	-- country, per T.35

		t35Extension	INTEGER (0..255),	-- assigned nationally

		manufacturerCode	INTEGER (0..65535)	-- assigned nationally

	},

	…

}

�autonumlgl � Clarification of Use of NonStandardIdentifier (Section 7, Page 35) - Editorial

NonStandardIdentifier: is used to identify the type of non-standard parameter. It is either an object identifier, or an H.221 type of identifier that is an octet string consisting of exactly four octets which are country code (octet 1 as in T.35 [22]; octet 2*), manufacturer code (next two octets*), *=assigned nationally. The manufacturer codes are the same as those assigned for use in H.320 [17]. H.245 non-standard identifiers may be either “object” type or “h221NonStandard” type at the discretion of the manufacturer defining the non-standard message, as OBJECT IDENTIFIERs and h221NonStandard messages come from non-overlapping spaces and cannot be confused. However, since h221NonStandard messages are also used by H.320, such messages come from the same space as H.320 messages, and shall have the same meaning.

�autonumlgl � Add NOTE Clarifying Use of Bi-directional Channels (Section 7.3.1, Page 45) - Editorial

Add to 7.3.1 after nullData:

NOTE: Terminals capable only of uni-directional (transmit or receive) operation on media types which make use of bi-directional channels shall send capabilities only for the supported direction of operation. The reverse direction will use the nullData type, for which no capability is necessary. Transmit-only terminals should send transmit capabilities, but terminals should not assume that the absence of transmit capabilities implies that transmit-only operation is not possible.

�autonumlgl � Clarification of H223SkewIndication (Section 7.10.4, Page 58) - Editorial

�seq section \c�
0
�.�seq sub_section\c�
0
�.�seq sub_sub_section�
3
��seq sub_sub_sub_section \r 0 \h
�	H.223 Skew Indication

This is used to indicate to the far-end terminal the average amount of time skew between two logical channels.

logicalChannelNumber1 and logicalChannelNumber2 are logical channel numbers of opened logical channels.

skew is measured in milliseconds, and indicates the delay that must be applied to data belonging to logicalChannelNumber2 as measured at the output of the multiplex, to achieve synchronisation with logicalChannelNumber1 as measured at the output of the multiplex. The skew includes differences in: sample time, encoder delay, and transmitter buffer delay, and is measured relative to the transmission time of the first bit of data representing a given sample point. The actual delay necessary for synchronisation is dependent on decoder implementation, and is a local matter for the receiver.

29. Correction of Defects in H.245 for use with V.70 DSVD (Section 6) - Proposed Technical Change

On page 11:

TerminalCapabilitySet	::=SEQUENCE

{

	sequenceNumber	SequenceNumber,

	protocolIdentifier	OBJECT IDENTIFIER,

				-- shall be set to the value

				-- {itu recommendation h 245 version (0) 1}

	multiplexCapability	MultiplexCapability OPTIONAL,

	capabilityTable	SET SIZE (1..256) OF CapabilityTableEntry OPTIONAL,

	capabilityDescriptors	SET SIZE (1..256) OF CapabilityDescriptor OPTIONAL,

	...

}

V75Capability	::=SEQUENCE

{

	audioHeader	BOOLEAN,

	...

}

Additional semantics for section 7.2.2:

V75Capability indicates the capabilities of the V.75 control entity. The audioHeader indicates the capability of the V.75 audio header.

On page 12:

MultiplexCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	h222Capability	H222Capability,

	h223Capability	H223Capability,

	v76GMUXCapability	V76GMUXCapability,

	...

}

�On page 13:

VGMUXCapability	::=SEQUENCE

{

	suspendResumeV76Capability	::=SEQUENCE

{

	suspendResumeCapabilitywAddress	BOOLEAN,

	suspendResumeCapabilitywoAddress	BOOLEAN,

	rejCapability	BOOLEAN,

	sREJCapability	BOOLEAN,

	mREJCapability	BOOLEAN,

	crc8bitCapability	BOOLEAN,

	crc16bitCapability	BOOLEAN,

	crc32bitCapability	BOOLEAN,

	uihCapability	BOOLEAN,

	numOfDLCS	INTEGER (2..8191),

	twoOctetAddressFieldCapability	BOOLEAN,

	loopBackTestCapability	BOOLEAN,

	n401Capability	INTEGER (1..4095),

	maxWindowSizeCapability	INTEGER (1..127),

	v75Capability	V75Capability,

	...

}

Additional semantics for section 7.2.2.4:

The suspendResumeCapabilitywAddress indicates the capability of supporting V.76 suspend/resume with an address field. The suspendResumeCapabilitywoAddress indicates the capability of supporting V.76 suspend/resume without an address field.

rejCapability indicates the capability of the V.76 multiplex error control function to perfrom reject.

crc16bitCapability is the capability of multiplex to use 16-bit CRC.

uihCapablity indicates support of V.76 UIH frames.

numOfDLCS indicates the number of DLCs which the V.76 multiplex can support.

twoOctetAddressFieldCapability indicates the ability of the V.76 multiplex to support an address field of two ctets.

loopBackTestCapability indicates the support of loop back per recommendation V.76. n401Capability indicates the maximum value of N401 described in recommendation V.76. maxWindowSizeCapability indicates the maximum window size the V.76 multiplex can support.

On page 15:

AudioCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	g711Alaw64k	INTEGER (1..256),

	g711Alaw56k	INTEGER (1..256),

	g711Ulaw64k	INTEGER (1..256),

	g711Ulaw56k	INTEGER (1..256),

	g722-64k	INTEGER (1..256),

	g722-56k	INTEGER (1..256),

	g722-48k	INTEGER (1..256),

	g723		SEQUENCE

	{

		maxAl-sduAudioFrames	INTEGER (1..256),

		silenceSuppression	BOOLEAN

	},

				

	g728		INTEGER (1..256),

	g729		INTEGER (1..256),

	g729AnnexA	SEQUENCE

	{

	g-dsvd		blockingFactor	INTEGER (1..256),

		silenceSuppression	BOOLEAN,

	}

	is11172AudioCapability	IS11172AudioCapability,

	is13818AudioCapability	IS13818AudioCapability,

	 ...

}

Additional semantics for section 7.2.2.6:

g729AnnexA indicates support of the G.729 Annex A speech coder. The blockingFactor indicates the number of G.729 Annex A frames in a V.76 frame. silenceSuppression indicates the ability to support silence suppresion per G.729 Annex <TBD>.

On page 16:

DataProtocolCapability	::=CHOICE

{

	nonStandard	NonStandardParameter,

	v14buffered	NULL,

	v42lapm	NULL,	- - may negotiate to V.42bis

	hdlcFrameTunnelling	NULL,

	h310SeparateVCStack	NULL,

	h310SingleVCStack	NULL,

	transparent	NULL,

	segmentationAndReassembly	NULL,

	hdlcFrameTunnellingwSAR	NULL,

	...

}

Additional semantics for section 7.2.2.7:

segmentationAndReassembly indicates the ability to support segmentation and reassembly per V.70 Annex <???>. hdlcFrameTunnellingwSAR indicates the ability to support segmentation and reassembly with HDLC frame tunneling per V.70 Annex <???>.

On page 18:

OpenLogicalChannel	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	forwardLogicalChannelParameters	SEQUENCE

	{

		portNumber	INTEGER (0..65535) OPTIONAL,

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			vgmuxLogicalChannelParameters 				VGMUXLogicalChannelParameters,v76LogicalChannelParameters 	V76LogicalChannelParameters,

			...

		},

		...

	},

	-- Used to specify the reverse channel for bi-directional open request

	reverseLogicalChannelParameters	SEQUENCE

	{

		dataType	DataType,

		multiplexParameters	CHOICE

		{

			-- H.222 parameters are never present in reverse direction

			h223LogicalChannelParameters	H223LogicalChannelParameters,

			v76gmuxLogicalChannelparameters V76GMUXLogicalChannelParameters

		...

		} OPTIONAL,	-- Not present for H.222

		...

	} OPTIONAL,	-- Not present for uni-directional channel request

	...

}

 V75Parameters	::= SEQUENCE

 {

		 audioHeaderPresent	BOOLEAN,

		 ...

}	

	

V76 VGMUX LogicalChannelParameters	::=SEQUENCE

{

	hdlcParameters	V76HDLCParameters,

 	suspendResume	SEQUENCE

	audioHeader	BOOLEAN,

	suspendResume	BOOLEAN,

	mode		CHOICE

	{

		eRM	NULL,

		uNERM	NULL{

		wAddress	BOOLEAN,

		woAddress	BOOLEAN,

		...

	}

	uIH			BOOLEAN,

	mode		CHOICE

	{

		eRM	SEQUENCE

		{

			 windowSize	INTEGER (1..127) ,

			 recovery	CHOICE

			 {

			 rej	NULL,

			 sREJ	NULL,

			 mSREJ	NULL,

			 ...

		 	 }

			...

		}

	 	uNERM	NULL,

		...

	},

	v75Parameters	V75Parameters,

	...

}

V76HDLCParameters	::=SEQUENCE

{

	crcLength	CRCLength OPTIONAL,

	n401		INTEGER(0..65535) OPTIONAL,

	windowSize	INTEGER(0..65535) OPTIONAL,

	n401		INTEGER (1..127),

	loopbackTestProcedure	BOOLEAN,

	recovery	Recovery OPTIONAL,

	...

}

CRCLength	::=CHOICE

{

	crc8bit		NULL,

	crc32bit	NULL,

	...

}

Recovery		::=CHOICE

{

 	sREJ		NULL,

	mSREJ ...

}

CRCLength	::=CHOICE

{

	crc8bit		NULL,

	crc16bit	NULL,

	crc32bit	NULL,

	...

}

Additional semantics for section 7.3.1:

V75Parameters is used to indicate parameter specific to using V.75. audioHeaderPresent indicates the presence of the V.75 audio header.

wAddress indicates that the suspend/resume channel shall use the address field as defined in V.76. woAddress indicates that the suspend/resume channel shall not use the address field.

uIH indicates the use of V.76 UIH frames.

rej indicates the use of the reject procedure in V.76.

crc16bit indicates use of the 16-bit CRC as defined in V.76.

On page 19:

OpenLogicalChannelAck	::=SEQUENCE

{

	forwardLogicalChannelNumber	LogicalChannelNumber,

	reverseLogicalChannelParameters	SEQUENCE

	{

		reverseLogicalChannelNumber	LogicalChannelNumber,

		portNumber	INTEGER (0..65535) OPTIONAL,

		multiplexParameters	CHOICE

		{

			h222LogicalChannelParameters	H222LogicalChannelParameters,

			-- H.223 parameters are never present in reverse direction

			v75Parameters	V75Parameters,

			 ...

		} OPTIONAL,	-- Not present for H.223

		...

	} OPTIONAL,	-- Not present for uni-directional channel request

	...

}

On page 24:

ModeElement	::= SEQUENCE

{

	type		CHOICE

	{

		nonStandard	NonStandardParameter,

		videoMode	VideoMode,

		audioMode	AudioMode,

		dataMode	DataMode,

		encryptionMode	EncryptionMode,

		...

	},

	h223ModeParameters	H223ModeParameters OPTIONAL,

	v76Mode	V76ModeParameters OPTIONAL,

	...

}

V76ModeParameters	::= CHOICE

{

	suspendResumewAddress	NULL,

	suspendResumewoAddress	NULL,

	...

}

Additional semantics for section 7.6.1:

suspendResumewAddress indicates that the V.76 multiplex shall begin to use the suspend/resume with address procedures as defined in V.76. suspendResumewoAddress indicates that the V.76 multiplex shall begin to use the suspend/resume without address procedures as defined in V.76.

END

* Contact:	Mike Nilsson	Tel.: +44 1473 645413

	BT Labs	Fax: +44 1473 643791

	Ipswich, UK	E-mail: nilsson_m_e@bt-web.bt.co.uk

	

	Bill Welsh	Tel.: +44 1473 643810

	BT Labs	Fax: +44 1473 643791

	Ipswich, UK	E-mail: welsh_w_j@bt-web.bt.co.uk

* Contact:	Mike Nilsson	Tel.: +44 1473 645413

	BT Labs	Fax: +44 1473 643791

	Ipswich, UK	E-mail: nilsson_m_e@bt-web.bt.co.uk

	

	Bill Welsh	Tel.: +44 1473 643810

	BT Labs	Fax: +44 1473 643791

	Ipswich, UK	E-mail: welsh_w_j@bt-web.bt.co.uk

